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Abstract
We present the first general scheme to describe all four types of characteristic curves of flow fields – stream, path,
streak, and time lines – as tangent curves of a derived vector field. Thus, all these lines can be obtained by a
simple integration of an autonomous ODE system. Our approach draws on the principal ideas of the recently
introduced tangent curve description of streak lines. We provide the first description of time lines as tangent
curves of a derived vector field, which could previously only be constructed in a geometric manner. Furthermore,
our scheme gives rise to new types of curves. In particular, we introduce advected stream lines as a parameter-
free variant of the time line metaphor. With our novel mathematical description of characteristic curves, a large
number of feature extraction and analysis tools becomes available for all types of characteristic curves, which
were previously only available for stream and path lines. We will highlight some of these possible applications
including the computation of time line curvature fields and the extraction of cores of swirling advected stream
lines.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Flow fields play a vital role in many areas. Examples are
burning chambers, turbomachinery and aircraft design in in-
dustry as well as blood flow in medicine. The motion of
massless particles is governed by path lines in unsteady
flows, and by stream lines in steady flows. A common ap-
proach to visualize flows in real-world experiments is to re-
lease dye, i.e., a large number of particles, into the flow and
examine its behavior: vortices can be observed as patterns
of swirling flow. The resulting dye structures are differenti-
ated into two different types depending on how the dye was
released. A continuous release of dye from a point, line, or
surface leads to streak lines, streak surfaces or streak vol-
umes. An instantaneous release, on the other hand, leads to
time structures: a time line, for example, is created by re-
leasing dye along a usually straight line for a single moment
in time. The flow advects and deforms the time line, thereby
elucidating intricate flow patterns. Stream, path, streak, and
time lines are the classic characteristic curves of unsteady
flows. In contrast to stream and path lines, streak and time
lines have the ability to reveal vortex structures in the natu-
ral frame of reference (cf. Figure 7). This is one of the rea-
sons why they are used so often in real-world experiments.
In computer-based visualizations, on the other hand, stream

and path lines have more applications due to their simpler
mathematical background. In this paper, we will provide
novel mathematical tools for time lines that will extend the
possibilities for their analysis and visualization.

Stream and path lines have found their applications
in integration-based as well as feature-based visualization
methods. The latter build on the readily available differen-
tial descriptions of stream and path lines as tangent curves
of certain vector fields, i.e., as solutions of autonomous ODE
systems. This facilitates the mathematical analysis of stream
and path lines, since their properties can be described by em-
ploying formulations that are purely based on the vector field
and its derivatives. The integral curves themselves are not
required. This gave rise to a large number of feature extrac-
tion and analysis methods such as the extraction of centers
of swirling flow [PR99, WSTH07], or the computation of
derived properties such as their curvature [WT02] without
actually integrating a single stream or path line.

The situation is different for streak and time lines. Lack-
ing a readily available differential description, they found
their applications only in integration-based methods by
means of geometric algorithms for their construction. For
example, a number of recent contributions have been made
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to use streak and time surfaces in interactive applications
[CKSW08, FBTW10], compute them with high accuracy
and surface quality [KGJ09], and to render them in a
smoke-like manner to mimic real-world smoke experiments
[vFWTS08]. These approaches have proven that streak and
time lines/surfaces are valuable visualization tools for un-
steady flows.

Only recently, a differential description of streak lines
[WT10] has been introduced. It is based on the gradient of
the flow map, which has to be computed numerically using
a dense path line integration for all flows where the flow
map is not given in a closed-form, e.g., numerically simu-
lated flows. Algorithmically, this is similar to the computa-
tion of the Finite Time Lyapunov Exponent (FTLE) [Hal01].
This novel differential description of streak lines opened the
gates to the large number of feature extraction and analysis
tools that were previously only available for stream and path
lines. Among the first applications were cores of swirling
streak lines and streak line curvature fields [WT10]. Further-
more, significant speed-ups over the classic approach have
been demonstrated for cases where a larger number of streak
lines is to be computed.

In this paper, we provide the last missing differential de-
scription: we present the – to the best of our knowledge –
first tangent curve description of time lines. Similar to the
streak line approach from above, we define a new, derived
time line vector field based on the gradient of the flow map.
All tangent curves of this derived vector field are time lines
of the original flow, and vice versa.

The new tangent curve description of time lines is part of
a more general scheme developed in this paper. It builds on
the notions of a seeding field and an advection field. Loosely
speaking, a tangent curve of the former gets advected by
the latter; yielding an advected tangent curve (Section 2).
We will provide a differential description of advected tan-
gent curves and show how this describes different kinds of
characteristic curves depending on the specific choice for
the seeding and advection field. In fact, our new concept
encompasses all four classic types as well as new types of
characteristic curves (Section 3). It enables new applications
for time lines and surfaces (Section 4). Furthermore, we in-
troduce a new type of characteristic curve called advected
stream lines, which is a parameter-free variant of the time
line metaphor. We discuss their properties and show their
utility for feature-based and integration-based visualization
methods (Section 5). Implementational issues are discussed
in Section 6.

Our novel approach for representing and computing time
lines has the following advantages over the classic geometric
approach (similarly for advected stream lines):

• It enables feature-based analysis of times lines, since their
inherent properties can now be described using the time
line vector field and its derivatives.

• The computation of a larger number of time lines (or sur-
faces) is significantly faster.

Notation We consider a smooth n-dimensional (n = 2,3)
time-dependent vector field v(x, t) over the domain D× T
where D ⊆ IRn is the spatial domain and T is a time inter-
val. We write derived (n+ 1)-dimensional variables with a
bar like p̄, and derived (n+ 2)-dimensional variables with
a double bar like ¯̄q. Locations in space-time are denoted as
x̄ = (x, t)T = (x, t). All vectors throughout the paper are col-
umn vectors, we often omit the explicit ()T notation.

2. Advected Tangent Curves

This section presents the theoretical core of our approach:
we define the concept of advected tangent curves as a gener-
alization of all common characteristic curves of vector fields.
Later we will show how this general concept can be applied
to define vector fields whose tangent curves describe differ-
ent characteristic curves of time-dependent flows.

2.1. Tangent Curves

Let IEn be the n-dimensional Euclidean space. A curve L ⊂
IEn is called a tangent curve of an n-dimensional vector field
v(x), if for all points p ∈ L the tangent vector of L coin-
cides with v(p). Tangent curves are the solutions of the au-
tonomous ODE system

d
dτ

x(τ) = v(x(τ)) with x(0) = x0. (1)

For all points x∈ IEn with v(x) 6= 0, there is one and only one
tangent curve through it. They do not intersect or join each
other. Hence, tangent curves uniquely describe the direc-
tional information of v, which in turn allows to describe im-
portant properties of them solely by considering the deriva-
tives of the vector field v. This is the basis for many fea-
ture extraction and analysis methods such as the detection of
vortex core lines [SH95,PR99,WSTH07], topological analy-
sis [HH91], or the computation of scalar fields describing the
curvature or torsion of tangent curves [WT02]. These meth-
ods rely entirely on the derivatives of v and can be applied
without actually integrating a single tangent curve.

2.2. Conceptual Definition of Advected Tangent Curves

Let v(x, t) be the time-dependent vector field whose charac-
teristic curves are to be analyzed. Additionally, we introduce
two auxiliary (n+1)-dimensional vector fields:
the advection field

p̄(x̄) =
(

w(x, t)
1

)
(2)

and the seeding field

f̄(x̄) =
(

a(x, t)
g(x, t)

)
. (3)
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until a time step t is reached.

Figure 1: Conceptual definition of advected tangent curves.

They consist of two time-dependent vector fields w(x, t) and
a(x, t) as well as a time-dependent scalar field g(x, t). In Sec-
tion 3, we show that different choices of w,a,g yield differ-
ent characteristic curves of the vector field v to be analyzed.
Note that the tangent curves of p̄ describe the path lines of
w due to the last component being 1 [WT10]. In fact, later
on we will rather often choose w = v such that the advection
field p̄ describes the particle motion of the underlying flow
field v.

We define advected tangent curves as follows:

Definition 1 Let L be a tangent curve of the seeding field f̄.
Considering the set of particles of the advection field p̄ that
run through L, the advected tangent curve L′ is the collection
of all these particles at a time t.

In other words, an advected tangent curve lives in the time
step t and is created by advecting the original tangent curve
of f̄ in the advection field p̄ until the time step t is reached.
Geometrically, L′ can be constructed as follows: choose a
number of seed points on L, integrate tangent curves in p̄

starting from these seeds, and intersect the curves with the
time t. Figure 1 illustrates the concept.

2.3. Flow Map of the Advection Field

To describe advected tangent curves in an algebraic man-
ner, we need the flow map of the advection field p̄. The flow
map φ : D→ D describes the spatial location of a particle
seeded at (x, t) and integrated over a time interval τ, de-
noted as φ

τ
t (x). As a side note, the computation of Finite

Time Lyapunov Exponents (FTLE) [Hal01] is essentially
based on the consideration of the (spatial) gradient of φ. In
fact, ∇φ

τ
t (x) =

∂φ

∂x is an n× n matrix describing the behav-
ior of particles sent out in a small spatial neighborhood of x.
For our purposes, we additionally need the spatio-temporal,
(n+ 1)-dimensional flow function φ̄ of p̄, which is defined
as

φ̄ : D×T → D×T , φ̄
τ(x̄) =

(
φ

τ
t (x)

t + τ

)
. (4)

The gradient of φ̄ can be expressed as the (n+ 1)× (n+ 1)
matrix

∇φ̄
τ(x̄) =

(
∇φ

∂φ

∂t
0 .. 0 1

)
. (5)

The fact, that the last component of p̄ is 1, ensures that the
last line of ∇φ̄ is (0, ..,0,1). Regarding the inverse of ∇φ̄,
we note

(∇φ̄)−1 =

(
∇φ

∂φ

∂t
0...0 1

)−1

=

(
(∇φ)−1 −(∇φ)−1 · ∂φ

∂t
0...0 1

)
.

(6)

2.4. Description of Advected Tangent Curves

We show that advected tangent curves can be expressed as
tangent curves of a derived vector field:

Theorem 1 Given a seeding field f̄ and an advection field
p̄ with its flow function φ̄, every advected tangent curve is
a tangent curve of the (n+ 2)-dimensional vector field (and
vice versa)

¯̄q(x̄,τ) =

((
∇φ̄
)−1 · f̄

(
φ̄
)
− g

(
φ̄
)
· p̄

g
(
φ̄
) )

(7)

in spatio-temporal notation with φ̄ = φ̄
τ(x̄) and p̄ = p̄(x̄).

Discriminating between spatial and temporal components, it
reads

¯̄q(x, t,τ) =

(∇φ)−1 ·
(

a(φ̄)−g(φ̄) ∂φ

∂t

)
− g(φ̄) ·w

0
g(φ̄)


(8)

with φ = φ
τ
t (x), φ̄ = (φτ

t (x), t + τ)T and w = w(x, t), which
follows directly from (2), (3) and (6). We call ¯̄q the advected
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Figure 2: Definition of the vector field ū(x̄,τ), which is the
main ingredient of the advected tangent curve vector field ¯̄q.

tangent curve vector field. It is defined in the domain D×
T ×ϒ with τ ∈ ϒ.

Proof: Given is a certain advected tangent curve through the
space-time point x̄ = (x, t) as shown in Figure 2. It relates to
a point x̄c

0 on the seeding tangent curve of f̄ via an integration
in the advection field p̄. We can write this relation using the
flow function in two ways, from the advected to the seeding
tangent curve:

x̄c
0 = φ̄

τ(x̄) =
(

φ
τ
t (x)

t + τ

)
=

(
xc

0
t + τ

)
, (9)

or from the seeding to the advected tangent curve:

x̄ = φ̄
−τ(x̄c

0) =

(
φ
−τ
t+τ(x

c
0)

t

)
=

(
x
t

)
. (10)

The next point x̄1 on the advected tangent curve can be ob-
tained in the following way: integrate f̄ starting at the point
x̄c

0 for a small ε. From the resulting point x̄c
1, do an integra-

tion of p̄ until the time t is reached:

x̄c
1 = x̄c

0 + ε · f̄(x̄c
0) =

(
xc

1
t + τ+ ε ·g(x̄c

0)

)
(11)

x̄1 = φ̄
−τ−ε·g(x̄c

0)(x̄c
1) =

(
x1
t

)
. (12)

To go from x̄ to x̄1 by a vector field integration, we define
the vector field

ū(x̄,τ) = lim
ε→0

x̄1− x̄
ε

. (13)

In order to observe the continuation of the advected tangent
curve through x̄ and x̄1, we consider another particle on the
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0

f̄(x̄ c
0 )

transport of f̄(x̄c
0)

along the tangent curves of p̄
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ū(x̄,τ)

g(x̄c
0) · p̄(x̄)

∇(φ̄−τ(x̄c
0)) · f̄(x̄c

0)

Figure 3: Computing ū(x̄,τ) by transporting the seeding
vector f̄(x̄c

0).

seeding tangent curve of f̄:

x̄c
2 = x̄c

1 + ε · f̄(x̄c
1) =

(
xc

2
t + τ+ ε ·g(x̄c

0)+ ε ·g(x̄c
1)

)
(14)

x̄2 = φ̄
−τ−ε·g(x̄c

0)−ε·g(x̄c
1)(x̄c

2) =

(
x2
t

)
. (15)

From this we can formulate ¯̄q as

¯̄q(x̄,τ) =
(

ū(x̄,τ)
g(φ̄τ(x̄))

)
. (16)

In order to compute ū, we observe how the vector f̄(x̄c
0) is

transported under the integration of p̄ as shown in Figure 3.
In fact, since an integration of p̄ over an integration time of
−τ transports a particle from x̄c

0 to φ̄
−τ(x̄c

0) = x̄ (cf. Equation
(10)), the vector f̄(x̄c

0) is transported to ∇(φ̄−τ(x̄c
0)) · f̄(x̄

c
0).

Since the last line of∇(φ̄−τ(x̄c
0)) is (0, ...,0,1), the last com-

ponent of∇(φ̄−τ(x̄c
0)) · f̄(x̄

c
0) is g(x̄c

0). This gives

ū(x̄,τ) =∇(φ̄−τ(x̄c
0)) · f̄(x̄

c
0)−g(x̄c

0) · p̄(x̄). (17)

Applying the Nabla operator to both sides of the identity
φ̄
−τ(φ̄τ(x̄)) = x̄, we get∇φ̄

−τ(φ̄τ(x̄)) ·∇φ̄
τ(x̄) = In+1 where

In+1 is the (n+1) identity matrix. Inserting (9) into it gives

∇φ̄
−τ(x̄c

0) = (∇φ̄
τ(x̄))−1. (18)

Inserting this and (9) into (17), and the result into (16) gives
the desired spatio-temporal formula (7) for ¯̄q.

3. Characteristic Curves as Advected Tangent Curves

In the following, we apply the methodology from the pre-
vious section and show how different types of characteristic
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curves can be described as advected tangent curves. This in-
cludes classic and new types of curves.

3.1. Classic Types of Characteristic Curves

Stream, path, streak, and time lines are the four classic types
of characteristic curves in time-dependent flows. While tan-
gent curve descriptions for stream and path lines are triv-
ial, this is not the case for streak and time lines. Only re-
cently, a tangent curve description for streak lines has been
introduced [WT10]. It allows to apply feature extraction and
analysis methods to streak lines that have been developed in
our community originally for stream or path lines, but could
not be applied to streak lines since their inherent properties
could not be described in terms of the derivatives of some
vector field. As we will show in the following, the streak line
description of [WT10] is a special case of the advected tan-
gent curve scheme from Section 2. Our more general scheme
covers all four classic types of characteristic curves.

Time Lines w = v,a≡ c,g≡ 0

A time line is the collection of all particles seeded along a
straight line at the same time step, i.e., a straight line which
gets advected by the flow. An analogue in the real world is an
infinitely flexible yarn or wire thrown into a river, which gets
transported and deformed by the flow. Geometrically, a time
line can be obtained by applying a path surface integration in
the flow field starting at a straight line with t = const, and in-
tersecting the path surface with a hyperplane perpendicular
to the t-axis. Note that some definitions in the literature do
not require the seeding line to be straight. As shown in Sec-
tion 3.2, our approach works also for non-straight seeding
lines as long as they can be described by (3).

To provide a differential description for the time lines of
a time-dependent flow field v(x̄), we apply our new method
for advected tangent curves from Section 2 as follows:

• The seeding field f̄ is chosen such that it describes straight
lines living in a constant time step, i.e., we set a≡ c,g≡ 0

where c is a constant vector. We have

f̄(x̄) =
(

c
0

)
. (19)

• The advection field p̄ is chosen such that it describes the
path lines of the flow field v, i.e., we set w = v and have

p̄(x̄) =
(

v(x̄)
1

)
. (20)

Inserting these choices into (8) gives the time line vector field

¯̄q(x, t,τ) =

(∇φ
τ
t (x)

)−1 · c
0
0

 . (21)

Figure 5 illustrates this. To the best of our knowledge, this
is the first description of time lines as tangent curves of a
derived vector field.

Note that different constant vectors c yield different time
lines. In other words, the time line vector field is parameter-
dependent. We will detail its properties in Section 4.

Streak Lines w = v,a≡ 0,g≡−1

A streak line is the connection of all particles set out at dif-
ferent times but the same point location. In an experiment,
one can observe these structures by constantly releasing dye
into the flow from a fixed position. The resulting streak line
consists of all particles which have been at this fixed posi-
tion sometime in the past. Geometrically, streak lines can be
obtained by applying a path surface integration starting from
a straight line parallel to the t-axis, and intersecting this path
surface with a hyperplane perpendicular to the t-axis.

Streak lines can be described as tangent curves of a de-
rived vector field using a constant seeding field f̄ pointing
backwards in time and an advection field p̄ describing the
path lines of the flow (Figure 4):

f̄(x̄) =
(

0
−1

)
p̄(x̄) =

(
v(x̄)

1

)
. (22)

c© 2012 The Author(s)
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(a) Stream lines. (b) Path lines. (c) Streak lines.

(d) Time lines for two different constant vectors c. The differences at the upper and lower border
of the images are induced by the choice of c.

(e) Advected stream lines.

Figure 7: Overview of different characteristic curves in the 2D time-dependent flow behind a cylinder. All curves are shown in
the same spatial domain downstream from the cylinder where the well-known von Kármán vortex street is well developed. Time
step and τ are the same for stream lines, time lines, and advected stream lines. Path and streak lines are defined over a time or
τ-interval, which have been chosen to match the other curves as much as possible.

Inserting these choices into (8) gives the streak line vector
field as it is already known from [WT10]

¯̄q(x, t,τ) =


(
∇φ

τ
t (x)

)−1 · ∂φ
τ

t (x)
∂t + v(x, t)

0
−1

 . (23)

Hence, the theory regarding streak lines from [WT10] is a
special case of the more general scheme that we introduced
in Section 2. We refer the reader to [WT10] for a detailed
discussion of streak lines.

Stream and Path Lines

Path lines describe the trajectories of massless particles in
time-dependent vector fields, whereas stream lines do the
same in steady vector fields. Both can be described as tan-
gent curves of a derived vector field in a straightforward
fashion. The stream lines of a time-dependent flow v are
given as the tangent curves of s̄ = (v,0). The path lines of
v are the tangent curves of p̄ = (v,1).

Hence, it is not necessary to describe stream and path
lines as advected tangent curves. However, from a theoret-
ical point of view, it is interesting to see that they fit into our
general scheme as well. Equation (8) describes stream lines
for w≡ 0, a= v,g≡ 0, and path lines for w≡ 0, a= v,g≡ 1.

As a side note, considering Equation (8) for a steady vec-
tor field confirms the commonly known fact that path and
streak lines coincide with stream lines in this case, whereas
time lines do not.

3.2. New Types of Characteristic Curves

The general scheme of advected tangent curves does not
only provide tangent curve descriptions of the four classic
types of characteristic curves, but it gives also rise to new

ones. It turns out that generalized streak lines [WTS∗07] can
be described using this scheme – in order to focus on our
core contributions, we detail this only in the supplemental
material. In the following we will introduce advected stream
lines as a parameter-independent alternative to time lines.

Advected Stream Lines w = v, a = v,g≡ 0

As described earlier, time lines depend on the choice of a
constant vector c that defines the direction of the straight
seeding lines. In fact, for every given time-dependent flow,
there is a family of time line vector fields describing different
time lines for different choices of c.

We propose a parameter-independent alternative that is
seeded from curves at a constant time step – just like time
lines –, but these curves are not straight lines anymore. In
particular, we propose to advect the stream lines of a time-
dependent flow v along its path lines. We set

f̄(x̄) =
(

v(x̄)
0

)
p̄(x̄) =

(
v(x̄)

1

)
(24)

for the seeding and the advection field, respectively. Figure 6
gives an illustration. We call this new class of characteristic
curves advected stream lines. Their tangent curve descrip-
tion is given by inserting (24) into (8) and reads

¯̄q(x, t,τ) =

(∇φ
τ
t (x)

)−1 ·v(φτ
t (x), t + τ)

0
0

 . (25)

We will detail their properties in Section 5.

4. Time Lines

4.1. Seeding and Integration

The time line vector field ¯̄q(x, t,τ) from Equation (21) can
be used as follows to integrate a time line which corresponds

c© 2012 The Author(s)
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tangent curve of ¯̄qx

(time line of v)

stream surface of ¯̄qz

(time surface of v)

(a) Computing a time surface as a stream sur-
face using two time line vector fields of the
same flow v, but corresponding to different
seeding fields.

(b) Time surfaces computed using the pairs
( ¯̄qx, ¯̄qz) (red), ( ¯̄qz, ¯̄qy) (blue), and ( ¯̄qy, ¯̄qx)

(green).

Figure 8: Time surfaces in the flow behind a square cylinder at t = 100 and τ =−5.
After pre-computing the time line vector fields (4 minutes each), the time surfaces
can be integrated in a fraction of a second.

Figure 9: Advected stream surface in the
flow behind a square cylinder at t = 100
and τ = −10. After pre-computing ¯̄q (8
minutes), the advected stream surfaces
can be integrated at interactive rates
since they are stream surfaces of ¯̄q.

to the straight line planted into the flow at t0 and transported
over a time interval τ:

1. Seed a tangent curve at (x, t0 + τ,−τ).
2. Integrate ¯̄q in forward and backward direction. Since the

integration will stay in the same t,τ-slices (the last two
components of ¯̄q are zero), it suffices to keep the spatial
subspace in memory.

All visualization methods for steady vector fields are suit-
able for the depiction of time lines, since for a given choice
of t and τ the time line vector field reduces to a steady n-
dimensional vector field. For example, the time lines of a
2D time-dependent flow can be visualized using Line Inte-
gral Convolution (LIC) applied to a spatial subspace of ¯̄q.
Figure 7d shows this for a flow behind a cylinder. This data
set has been simulated using the Free Software Gerris Flow
Solver [Pop04]. Note that the stream and path lines of this
flow (Figures 7a-b) do not reveal the patterns of the well-
known von Kármán vortex street, whereas time lines, streak
lines, and advected stream lines do.

Integrating a time line in ¯̄q amounts to a simple tangent
curve integration, whereas the classic approach amounts to a
path surface integration. Comparing the two approaches, the
time spent for computing ¯̄q will be amortized for a certain
number of time lines. In our implementation, this happens
for the 2D cylinder flow at around 300 time lines. After that,
our new approach is faster. Similar statements apply to time
surfaces and advected stream lines/surfaces. See the supple-
mental material for more details.

A time surface of a 3D time-dependent flow is the col-
lection of all particles seeded from a planar surface patch.
Typically, a time surface is computed by advecting the sur-
face patch through the flow, thereby exposing it to diverg-
ing/converging flow behavior. In principal, the whole sur-
face has to be checked after every integration step for its
compliance with given resolution and quality constraints.
Only recently, a number of solutions have been presented to
deal effectively and efficiently with this problem [vFWTS08,
KGJ09, FBTW10]. Using the tangent curve description of

time lines, time surfaces can now be integrated as stream
surfaces in ¯̄q using one of many well-established algorithms,
e.g., [Hul92]. The advantage is that one only needs to check
the front line of the stream surface for insertion/removal of
tracers during integration.

An arbitrary seeding curve cannot be used for this stream
surface, since the result will generally not correspond to a
planar surface patch at τ = 0. We give the following algo-
rithm for computing time surfaces using two time line vec-
tor fields ¯̄q1 and ¯̄q2, which have been obtained using two
different constant vectors c1 and c2 for the seeding field:

1. Integrate a time line as a tangent curve in ¯̄q1.
2. Starting from this line, integrate a stream surface in ¯̄q2.

The result is a time surface that corresponds to a planar sur-
face patch spanned by c1 and c2 at τ = 0. An illustration
is shown in Figure 8a. The red seeding time line has been
integrated in the time line vector field ¯̄qx defined by cx =
(1,0,0)T , and the semi-transparent time surface has been in-
tegrated as a stream surface in ¯̄qz defined by cz = (0,0,1)T .
Further time surfaces of this flow behind a square cylin-
der are shown in Figure 8b. This data set is a direct nu-
merical Navier Stokes simulation by Camarri and Salvetti
(U Pisa), Buffoni (Politecnico of Torino), and Iollo (U Bor-
deaux I) [CSBI05]. It is an incompressible solution with a
Reynolds number of 200.

4.2. Feature Extraction and Analysis

The tangent curve description of time lines facilitates their
mathematical analysis and opens the door to a number of
feature extraction and analysis methods that were previously
only available for stream, path, and streak lines.

Equation (21) suggests a relation between FTLE and time
lines since both utilize the spatial gradients of φ. As it turns
out, in vector fields for which ∇φ is the identity, we have it
that FTLE is zero and time lines are straight lines. This is
for example the case in the Beads Problem flow: Wiebel et
al. [WCW∗11] reported of a biofluid dynamic model where
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neither classic visualization methods such as LIC or path
lines, nor feature extraction methods such as vector field
topology or FTLE were able to detect an apparent attractor
in the flow, i.e., a point in the flow where particles aggre-
gate. Wiebel et al. used particle density to extract the attrac-
tor. Since the simulation is not available to us, we use an
analytic variant [Pei09] of this flow which exhibits similar
properties:

v(x,y, t) =
(
−(y− 1

3 sin(t))− (x− 1
3 cos(t))

(x− 1
3 cos(t))− (y− 1

3 sin(t))

)
. (26)

Since this is a time-periodic flow, the attractor can be found
using the method of Shi et al. [STW∗06]. It is a path line
with the following parametric description:

x(t) = 1
3
(sin(t)+ cos(t),−cos(t)+ sin(t))T . (27)

Figure 11c reveals that the time lines of this flow are straight
lines – even for long integration times τ. Hence, the attractor
cannot be found using time lines, which therefore will most
likely not play a role in an unsteady topology.

Another remarkable property is that the time line vector
field cannot have zeros, i.e., the spatial projection of ¯̄q (of-
ten visualized using LIC in this paper) cannot have criti-
cal points. This can be seen as follows: Note that both the
seeding and the advection field for the time line case do
not have critical points. Consider now two neighboring par-
ticles at τ = 0. During the advection, they can come very
close to each other, but they can never coincide, since their
movement is given by path lines which are tangent curves in
space-time, and tangent curves cannot intersect each other
(Section 2.1). Mathematically, this can also be seen using the
Cauchy stress tensor ∇φ

T∇φ which describes the behavior
of neighboring particles: it is always positive definite.

For every point in the (n+2)-dimensional time line vector
field there is one and only one time line through it. This al-
lows to define derived scalar fields describing time line prop-
erties just by considering the derivatives of ¯̄q. Integrating the
time lines themselves is not required. For example, we can
compute the curvature of time lines as a scalar field:

κ2D(u) =
det(u,∇u ·u)
‖u‖3 , κ3D(u) =

‖u × ∇u ·u‖
‖u‖3

(28)

for 2D and 3D flows respectively, and with u denoting the
spatial projection of ¯̄q. Figure 10 (top) shows the curvature
of time lines.

5. Advected Stream Lines

5.1. Seeding and Integration

Advected stream lines are integrated as tangent curves in
¯̄q(x, t,τ) from Equation (25) as described earlier for time
lines. In contrast to time lines, however, advected stream

lines do not depend on a parameter. They are uniquely de-
fined for a time-dependent flow v. They can be visualized,
similar as time lines, using e.g. LIC. See Figures 7e and 11d.

An advected stream surface SA is the collection of all par-
ticles started from a regular stream surface S of the under-
lying flow and integrated over a certain time interval τ. SA
can be computed as a stream surface in ¯̄q. In contrast to time
surfaces, any seeding curve can be used. This can be seen by
noting that SA is a family of advected stream lines. They cor-
respond to a family of regular stream lines at τ = 0, which
give the regular stream surface S of the underlying flow. Fig-
ure 9 shows an advected stream surface.

5.2. Feature Extraction and Analysis

Areas where characteristic curves of a flow exhibit a spiral-
ing behavior are of great interest since they are usually asso-
ciated with important flow features such as vortices. Sujudi
and Haimes developed a method of 3D steady flows to ex-
tract core lines around which stream lines swirl [SH95]. The
Parallel Vectors operator is often used to extract these fea-
tures [PR99]. For 3D time-dependent flows, one may track
these core lines over time [TSW∗05], which yields surfaces
in the 4D space-time domain. However, since the motion in
unsteady flows is governed by path lines, it seems reasonable
to investigate their swirling motion as done in [WSTH07].
This yields surfaces in the 4D space-time domain, too.

In this section we want to extend the same idea to ad-
vected stream lines and extract cores around which they
show spiraling behavior. Since their geometry is governed
by the motion of particles, a spiraling behavior of advected
stream lines indicates the presence of a vortex.

Let us first consider a 2D time-dependent flow v with its
4D advected stream line vector field ¯̄q. Let u be the spa-
tial projection of ¯̄q, which is a 2D vector field for a certain
choice of (t,τ). It has been shown in [WSTH07] that the
approach of Sujudi/Haimes essentially degrades to tracking
critical points in such 2D vector fields. We follow this idea
and define the cores of swirling advected stream lines as
the collection of all critical points of u over all (t,τ) un-
der the side condition that ∇u has a pair of complex eigen-
values. This side condition ensures swirling behavior of the
advected stream lines around the core. The cores are surface
structures in the 4D domain of ¯̄q. In space-time or D×ϒ,
they are lines.

Figure 11b shows such a core in space-time for τ = −9
in the Beads Problem flow. As it turns out, the core line ap-
proaches the attractor with decreasing τ. This is an interest-
ing result, since the Beads problem is considered to be one
of the major test cases for a successful approach to an un-
steady flow topology. Gathering the results from Wiebel et
al. [WCW∗11], Weinkauf and Theisel [WT10] and this pa-
per, we have the following situation regarding the attractor
in the Beads Problem flow: the cores of swirling stream and
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Figure 10: Volume renderings of
the curvature of time lines (top,
τ=−5) and advected stream lines
(bottom, τ = −10) in the flow be-
hind a square cylinder at t = 100.

(a) Path lines in the
vicinity of the attrac-
tor (yellow curve).
From [WT10].

(b) Advected stream
line core (red)
matches the attrac-
tor at τ =−9.

(c) Time lines are
straight lines.
D × ϒ domain with
τ = (−9,0).

(d) Advected stream
lines in the D × ϒ

domain with
τ = (−9,0).

Figure 11: Time lines are straight lines in the Beads Problem flow since the gradient of the
flow map ∇φ is the identity. Advected stream lines, on the other hand, reveal the distinct
flow behavior, and the core of swirling advected stream lines matches the attractor.

path lines do not match it, time lines do not exhibit features
following the notion of Sujudi/Haimes, but streak line cores
and advected stream line cores can be used to find the at-
tractor reliably. Further investigations of this topic are left to
future research.

As a side note, the cores of advected stream lines can also
be obtained by first tracking the critical points of the origi-
nal flow v in space-time, and then advecting these line-type
structures along the path lines of v. This follows directly
from the definition of advected stream lines.

The approach for 3D time-dependent flows follows along
the same lines, but yields volumes in 5D. Since the spatial
projection u is a steady 3D field, one could also apply the
original approach of Sujudi/Haimes to this field, i.e., search
for core lines where u ‖ ∇u · u in regions where ∇u has
complex eigenvalues. We leave this for future research.

Similarly to time lines, we can compute the curvature of
advected stream lines as a derived scalar field. Figure 10
(bottom) shows this for the flow behind a square cylinder.

6. Implementation and Evaluation

6.1. Implementation

We discuss the implementation here only for the 2D time-
dependent case, but it extends to 3D in a straightforward
fashion. We compute the advected tangent curve vector field
or one of its variants on an nx×ny×nT ×nτ 4D grid, where
(nx,ny,nT ) denotes the grid resolution of the original flow
and nτ = nT , as follows:

1. For every grid point (xi,yi, ti,0) of ¯̄q, seed four path lines
in the spatial ε-neighborhood (xi ± ε,yi, ti,0), (xi,yi ±
ε, ti,0) to approximate the spatial gradients of the flow

map, and two path lines in the temporal ε-neighborhood
(xi,yi, ti± ε,0) to do the same for the temporal gradients.
Note that some of the variants of ¯̄q require only a subset
of these computations, e.g., for time lines and advected
stream lines it suffices to compute the spatial gradients.

2. Integrate the path lines until they leave the domain D×T .
3. Intersect these path lines with every time step t j and com-

pute ¯̄q as given in (8). Assign the result to the grid point
(xi,yi, ti,τ j) where τ j = ti − t j. If one of the path lines
left the domain before reaching t j, denote this grid point
to be invalid (e.g., assign zeros). This applies in particular
to all boundary grid points since some of their seeds are
already outside of the domain.

Note that the last two components of ¯̄q are constant for most
types of characteristic curves. In these cases, it suffices to
save the first two components of ¯̄q and add the constant com-
ponents later on-the-fly during integration.

6.2. Numerical Accuracy

We evaluated the numerical accuracy of an integration in the
advected tangent curve vector field ¯̄q using analytical and
numerical ground truths similar to the ones that have been
used by Weinkauf and Theisel [WT10] for the evaluation of
the streak line vector field. We found the same high accu-
racy as reported in [WT10]. This is not surprising since the
advected tangent curve vector field uses the same numeri-
cal ingredients – spatial and temporal derivatives of the flow
map – as the streak line vector field. In fact, the streak line
vector field is a special case of the approach presented in
this paper. The interested reader is referred to [WT10] for a
detailed analysis of this issue.
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6.3. Memory Requirements
Assuming the time-dependent vector field v(x, t) has nT time
steps, each of them requiring the amount of memory M, then
the vector fields for time and advected stream lines require:

• M, the equivalent of a single time step, if we explore the
curves for a given (t,τ). Examples of this are shown using
LIC images throughout the paper.
• nT ·M, the equivalent of the original flow, if we stay within

a given time step t0 or a given τ.
• n2

T ·M to cover the whole space.

More details are given in the supplemental material.

6.4. Computation Times
Computing ¯̄q for a time step of the 2D cylinder data set took
52 seconds single-threaded on a laptop with an Intel Core
2 Duo T9550 (2.66GHz). Computing a spatial slice of the
time line or advected stream line vector fields took 4 minutes
for an integration interval τ =−5 in the 3D time-dependent
flow around a square cylinder. More measurements are given
in the supplemental material. All approaches based on flow
maps, such as FTLE or our advected tangent curves, spend
a significant amount of time with computing the flow map
and should benefit from faster approximation schemes such
as [BR10,HSW11]. We leave it to future work to investigate
this in detail.

7. Conclusions and Future Work
We introduced the – to the best of our knowledge – first
differential description of time lines. This is based on the
novel concept of advected tangent curves, which provides
for the first time differential descriptions of all classic char-
acteristic curves in a combined setting. It also allows for
new types of curves such as the newly introduced advected
stream lines. Our work in this paper focuses on the the-
oretical aspects of characteristic curves in general. There
is still room for improvement of practical issues such as
the memory consumption and the computation times of ¯̄q.
While our differential descriptions are not meant to replace
the previous geometric approaches for computing time and
streak lines/surfaces, they provide two major advantages:
They are significantly faster if a larger number of integral
lines/surfaces has to be computed. But most importantly,
they allow to describe the properties of these lines by means
of ¯̄q and its derivatives without actually integrating them.
This opens the gate to the large number of feature extraction
and analysis tools that have been developed in the visual-
ization community for stream and path lines – a promising
avenue for future research. We made a first step into this di-
rection and introduced the first feature-based approaches for
time and advected stream lines: curvature scalar fields and
advected stream line cores. We already mentioned other fu-
ture research directions throughout the paper. As a last note,
we only investigated a specific set of seeding and advection
fields, and it may be of interest to look into other choices
in order to explore the space of curves provided by our ap-
proach.
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